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Technological advancements in computing and analytics are taking knowledge-based industries 

into a new frontier. Three dimensional (3D) mapping and modeling have been advancing industries as a 

conduit for the application of many new technologies. The marine industry is part of this advancement, 

with it’s own unique opportunities and challenges. This paper will take a closer look at the current 

research, industry parallels and expected developments in the application of 3D mapping and modeling in 

the marine industry.

3D Mapping
Ecological mapping of habitats and their complexity in marine environments is crucial to 

supporting conservation. As of 2019, only 5% of the marine ecological landscape was estimated to be 

satisfactorily mapped (Rossi & Orejas, 2019). Biodiversity mapping for marine animals requires a 3D 

approach due to the volumetric distribution of the animals, and this requirement is crucial to prevent 

underestimation. A purely 2D approach is susceptible to under-compensation, but a 2.5D (compilation of 

2D scans in the z-axis) or a 3D approach also requires compensation for the temporal movement of the 

animals (Duffy & Chown, 2017).

High-resolution and detailed benthic maps are crucial to understand the available habitat for 

marine wildlife. A growing technique is the combination of LiDAR and photogrammetry to produce 3D 

maps of habitats, including biodiversity hotspots such as coral reefs, at the centimeter scale. The fine 

scale also requires that the measurement of equipment attitude is more precise to keep the margin of 

error for the LiDAR and photogrammetry data under acceptable levels. LiDAR generates a point-cloud, 

which is then processed to create a clean mesh on which photogrammtery data can be masked on to 

produce detailed surface texture and features. This data can then further be combined with Machine (ML) 

or Artificial Intelligence (AI) to classify organisms and habitat features. Semi-automatic and completely 

automatic methods are being demonstrated as a feasible means of substantially reducing human 

involvement in habitat classification (Mohamed et al., 2021)(Sauder et al., 2024). This approach of 

combining remote-sensing with ML is allowing the creation of valuable data and models that can allow 

conservation efforts to scale up. Figure 1 sketches the general workflow used to generate such habitat 

maps.
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Another means of scanning and mapping of the ocean floor is acoustics, either as Echo Sounders 

or Sonar, are part of most ships today. As sound travels better in water than other means, they become 

the most common means for a vessel to inspect and observe below the water. Sonar can be create 

coarse resolution 3D models of the sea floor. The use of multi-beam sonars has been a common practice 

for ocean floor mapping at a resolution of ~10 km. Echo sounders are widely used on merchant ships but 

the data they collect is very low resolution for mapping. 

Detailed mapping of the ocean floor also opens up  avenues to study the geology for minerals. 

Josso et al., 2023, combined machine learning classification to generate an ocean floor probability map 

for the occurrence of Fe-Mn crusts. Increased resolution of multi-spectral photography, acoustic surveys  

and Photogrammetry has the potential to increase the efficiency geological surveys for minerals and 

geological landforms, though visual methods are harder to implement in deep marine environments when 

compared to acoustic methods (Joo et al, 2020)(Liu et al, 2020).
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Figure 1:  Generalized workflow for using semi- or fully- automatic classification of marine ecological 
habitat.
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3D Modeling
Maritime operations rely on waterborne vessels, that require design, construction, inspections and 

maintenance. Inspections and maintenance are a routine task that are essential to safe and compliant 

operations. Structure damage and corrosion must be tracked, much like for civil infrastructure, so they 

can be addressed timely. The elimination of a human from the process is, for the foreseeable future, not 

practical, but the use of autonomous technologies and AI can greatly assist and streamline the process.  

Bonnin-Pascual & Ortiz, 2019, explored scientific literature on the pairing of autonomous data collection 

with AI assisted-classification to conduct inspections of vessels. They found that the technologies for this 

combined application can be deployed in the present and their applicability will become more reliable and 

detailed once they have been refined a bit further. 3D modeling plays a key role in providing data for 

human supervision, especially when insights need to be generated by analyzing depth or integration with 

technologies such as Augmented Reality (AR). 

Future Growth
The expected trajectory of the evolution of 3D mapping and modeling in marine environments can 

draw many parallels to their terrestrial counterparts. Autonomous Underwater Vehicles (AUV) and 

Remote Operated Vehicles (ROV) are expected to become more widely deployed in marine environments. 

Not only have research studies and preliminary industry applications benefited greatly from their 

adoption, but their continued application will only refine the technology and improve the value in using 

them. Hence, their role in 3D mapping can be expected to gradually increase. However, the equipment has 

a large cost to it when compared to the existing methods used, and when accounting for the large 

volumetric scale of marine environments, traditional methods, which include things like cameras being 

dragged behind manned boats or those equipped by human divers, should remain in use for the 

foreseeable future. A gap that does and will continue to exist is; data. More intelligent systems will require 

more data, while the field is already lacking. Hence, AUVs and ROVs will always have a strong use case 

where large amounts of data are needed, especially for the creation and use of more advanced modeling.

Another parallel to draw, is the increasing use of machine learning and deep learning models, that 

are becoming  more complex and capable. These models, which can be developed to autonomously 

categorize data on designated patterns, can take over a large amount of human work load when it comes 

to transforming raw data. Their use will only grow in the coming years and we expect that this will greatly 

increase the productivity of marine mapping initiatives. The gaps in data analytics, specifically identified by 

Rossi et al., 2019, will be filled initially through manual effort, that will be needed to train these algorithms. 

The semi-autonomous approach by Mohamed et al, 2021 and fully-autonomous approached by Sauder et 

al., 2024, are examples of what this approach will look like. As the accuracy and integration of these 

models increases, so will the scale of their application. Since the methods are currently excelling in 

academic testing for marine conservation, this field can be expected to be the first to benefit from this 

approach. However, due to the economic incentives behind geological surveys, that field should also be 

expected to soon develop its own models and technological integration. Hence, we can expect that 3D 
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mapping will continue to provide a bridge between future conservation and survey efforts, especially 

through integration with AUVs and ROVs data collection.

Such 3D mapping endeavors, however, are resource intensive. They are not currently suitable for 

real-time or quick data analytics, which takes away from one of the potential use cases of deploying ROVs 

and AUVs for data collection or monitoring. LiDAR especially, can be very extensive and data heavy, 

making it very challenging for interpretation for quick use. To address this, Papadopoulos et al., 2011, 

demonstrated how by using simplification algorithms, LiDAR point clouds can quickly be translated to 

coarse level maps for web deployment, while still reserving the high-resolution output for a later instance 

of analysis. Hence, we can see a strong use case for a platform that analyzes marine mapping data for a 

flexible use case, including automated identification through learning models and near-real time web-

available maps. We can expect their existing spatial analytics software to evolve by integrating such 

capabilities, or a new platform that caters to AUV and ROV data collection, as discussed before.

We must also make a special mention of citizen science. Manual efforts by private citizens can be 

invaluable to filling in deficiencies when it comes to 3D mapping of marine habitats, especially for 

conservation. Many coastlines do, and will probably continue to, lack the resources to deploy intensive 

surveying technologies. In these areas, citizen scientists will be crucial in updating data as well as 

compensating the initial demand of manual verification, though public training will be required to ensure 

data quality (Rossi et al. 2019). Sauder et al., 2024, recently demonstrated a completely automatic 

classification method for coral reef monitoring, by pairing deep-learning AI with video footage collected 

by human divers. This method also holds potential to use footage collected by local divers and utilize a 

learning model to provide classification and update data.

3D modeling will continue to develop, but its biggest bottleneck right now, is the integration of the 

different technologies that allow the workflow to come together. An increased use of ROVs and drones is 

expected, though the adoption rate will remain to be seen. An entire separate commentary can be made 

on the development of learning models for use in infrastructure and equipment inspections. Overall, a 

strong use case exists, especially financially. We can expect such technologies to roll out increasingly as 

the models become better and more integrated on existing platforms. There are also the technologies of 

Augmented Reality (AR) and Digital Twining. These are of particular interest as they will make the industry 

more dynamic, as well as utilize 3D modeling as a rudimentary form of data for their own operations. 

However, AR technologies are currently lagging in their practical application (Mascareñas et al. 2021)

(Gernez et al., 2020). We speculate that once the hardware reaches an acceptable level of application for 

widespread commercial or military application, it would be ready for adoption in the maritime industry as 

well. Digital Twining is a technology that allows monitoring and analysis of 3D models, remotely. With 

advancement in the technology and the rise of more complex machine learning algorithms, the workflow 

of generating Digital Twins through 3D models is likely to become more widely used and automated (Lv et 

al., 2023). It is a technology who’s use cases will continue to emerge as it grows.

The sharing and availability of data, especially privately collected data, is of great concern that the 

maritime industry must address (Jewkes, 2024). As with other industries, data is becoming increasingly 
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valuable. This inherently creates little incentive to invest in making data openly available. Also, there is 

little common oversight or collaboration across the various stakeholders in the industry, resulting in 

different standards of data collection and segregated ownership. The solution to such inaccessibility, 

depends entirely on market forces, and can play out in many a ways. In the absence of regulation, 

government investment, and collaborative market forces, the collaboration of private entities for data 

sharing is likely to be limited, if not entirely absent from an industry. Government and regulatory forces 

can often either invest public money or dictate industry collaboration to address similar challenges. 

However, competing geopolitical interests, international laws, cross-border treaties and limiting 

jurisdictions, make this topic unique, as well as more challenging to address in this industry.  

To conclude, we can see that the evolution and adaption of new technologies in the maritime 

industries is dynamic. It will rely on 3D mapping and modeling to enable these technologies. Investments 

in 3D mapping and modeling workflows and integration with service platforms will provide 

comprehensive growth for the industry. However, limitations from available resources and competing 

interests will dictate exactly how such investments will manifest. The industry will benefit from aligning 

itself to capitalize on these developments.
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